Seconde Lycée Carnot

Exercice 1 On souhaite utiliser le motif suivant pour réaliser une frise. CBEF est un carré, AB=6cm, ADC est isocèle en D et DC=5cm.

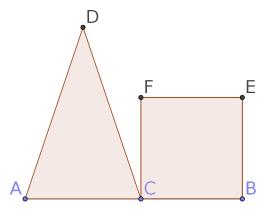


Figure 1

On recherche la meilleure forme pour cette

frise. On considère donc le point C comme mobile sur [AB]. AC= x cm

1. On choisit de poser AC = x cm.

Quelles sont les valeurs possibles pour la $variable \ x$?

La réalisation est telle que le périmètre du triangle doit être égale au périmètre du carré. Les questions 2 et 3 permettent de répondre au problème posé: Où placer ce point sur le segment [AB] pour satisfaire aux conditions de réalisation?

- 2. Donner les périmètres de ADC et de CBEF en fonction de x.
- 3. Résoudre le problème en utilisant une équation.

Exercice 2

1. Soit f la fonction définie par:

$$f(x) = -5x^2 + 13x + 6.$$

(a) Prouvez que:

$$f(x) = (-x+3)(5x+2).$$

- (b) Résoudre l'équation 5x + 2 = 0.
- (c) Calculer $f(-\frac{2}{5})$.
- (d) Résoudre alors l'équation:

$$f(x) = 0.$$

2. Sur la *figure 2*, on trouve une annonce d'agence immobilière. Quel est le prix de cette maison sans les frais de l'agence ?

Maison 7 pièces 137m2

Bouvigny-Boyeffles / Pas-de-Calais

265 000 €

Maison d'architecte

2 garages / Parcelle de 2200 m2

Honoraires: 3.1% TTC inclus.

Figure 2

Exercice 3-Nombres en base 10 et en base 2

Base 10 Nous représentons quotidiennement les nombres avec la base 10: les 9 chiffres permettent par leur position dans un nombre de représenter tous les nombres entiers.

Exemple: En base 10 ou décimale, l'entier naturel 123 se décompose de la façon suivante:

$$1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0$$

La position des chiffres indique si on doit les considérer comme des unités, des dizaines, des centaines. On dispose des dix chiffres de 0 à 9 pour multiplier chacune des puissances de 10.

Utilisons une représentation dans un tableau:

Seconde Lycée Carnot

Puissance de 10 ou Poids	10^{3}	10^{2}	10^{1}	10^{0}
Coefficient	0	1	2	3

1. Donner de la même façon la décomposition du nombre 1912.

Base 2 Les ordinateurs calculent en base 2 ou binaire. Cela vient de leur fonctionnement: leurs constituants de base appelés transistors peuvent laissent passer le courant ou pas. Il n' y a donc que deux états. Le mode de calcul est le même mais la base est 2, on ne dispose que de deux chiffres: 0 et 1.

C'est la représentation utilisée pour les entiers machines des processeurs modernes.

- 1. Conversion binaire vers décimal. Donner la décomposition avec les puissances de 2 des nombres binaires 1101₂, 1111₂. En déduire leur valeur décimale.
- 2. Conversion décimal vers binaire. Voici un algorithme permettant de convertir un nombre entier n écrit en base 10 vers la base 2, il repose sur des divisions euclidiennes successives:

Al	gorithme 1 : Conversion		6	2		2		2
1 t	ant que $n \neq 0$ faire Diviser n par 2		0	3		<u> </u>		<u> </u>
3 4	Noter le reste r_i Poser n égal au quotient		Ĭ			'''	••••	
5 fin 6 Renvoyer $r_pr_2r_1r_0$			•		≠ Exemple	e pour n	=6	•

 $0\leqslant i\leqslant p,\,p$ nombre de chiffres nécessaires à l'écriture de n en base 2.

Autrement dit, il suffit alors d'écrire les restes obtenus **de droite à gauche** dans l'ordre de leur apparition pour obtenir la conversion.

- (a) Compléter l'exemple pour convertir 6 en base 2 et sur 4 bits (bit qui signifie binary digit).
- (b) Quel sont les restes possibles dans une division euclidienne lorqu'on divise par 2?
- (c) Convertir les nombres 15 puis 192 en base 2 sur 4 bits.

De l'aide sur https://maths-code.fr

α		alpha	ι		iota	ρ		rho
β		beta	κ		kappa	σ	Σ	sigma
γ	Γ	gamma	λ	Λ	lambda	au		tau
δ	Δ	delta	μ		mu	v		upsilon
ε		epsilon	ν		nu	ϕ, φ	Φ	phi
ζ		zeta	ξ		xi	χ		chi
η		eta	0		omicron	ψ	Ψ	psi
θ	Θ	theta	π	П	pi	ω	Ω	omega

 ${\bf Seconde}$ Lycée Carnot Alphabet Grec ancien